

Clinical Policy: Genetic Testing Cardiac Disorders

Reference Number: CP.MP.216 Date of Last Revision: 02/22 Coding Implications Revision Log

See <u>Important Reminder</u> at the end of this policy for important regulatory and legal information.

Description

Arrhythmias and cardiomyopathies can be multifactorial, hereditary, or caused by a known environmental factor, such as a drug. Hereditary arrhythmias and cardiomyopathies are primarily diagnosed clinically and symptoms can be variable, even within the same family. Most hereditary cardiac conditions are associated with multiple genes and while genetic test results may not guide medical management for those with a clinical diagnosis, identification of a pathogenic or likely pathogenic variant can allow for cascade testing of asymptomatic family members who might benefit from life-saving treatment.

Congenital heart defects (CHDs) are structural heart defects that are present at birth. CHDs affect 1-1.2% of live births and can be caused by genetic and environmental factors. Determining an underlying genetic cause for CHD can aid in assessing recurrence risks for at-risk family members, evaluating for associated extracardiac involvement, assessing for neurodevelopmental delays, and providing a more accurate prognosis for the patient.

Familial hypercholesterolemia (FH) is the most common inherited cardiovascular disease and is characterized by severely elevated LDL cholesterol (LDL-C) levels that lead to atherosclerotic plaque deposition in the coronary arteries and proximal aorta at an early age, leading to an increased risk for cardiovascular disease. An estimated 70%-95% of FH results from a heterozygous pathogenic variant in one of three genes (APOB, LDLR, PCSK9) and determining the genetic cause of FH can aid in identifying at-risk family members and directing treatment options.

This document addresses genetic testing for cardiac disorders, focusing on cardiomyopathy, arrhythmia, congenital heart defects, and cholesterol disorders.

Due to the complexity of genetic testing for cardiomyopathy and the potential for misinterpretation of results, the decision to test and the interpretation of test results should be performed by, or in consultation with, an expert in the area of medical genetics and/or hypertrophic cardiomyopathy.

To inform and direct genetic testing for at-risk individuals, genetic testing should initially be performed in at least one close relative with definite cardiomyopathy (index case), if possible. Consultation with an expert in medical genetics and/or the genetics of cardiomyopathy, in conjunction with a detailed pedigree analysis, is appropriate when testing of second- or third-degree relatives is considered.

Below is a list of higher volume tests and the associated laboratories for each ceriteria section. This list is not all inclusive

CPT[®] Codes	Example Tests (Labs)	Criteria Section	Common ICD Codes
81403,S3862	Targeted Mutation Analysis for a Known Familial Variant	<u>Known Familial Variant</u> <u>Analysis</u>	N/A
81439	CMNext (Ambry Genetics) Cardiomyopathy Panel (GeneDx) Comprehensive Cardiomyopathy NGS Panel (Sequencing & Deletion/Duplication) (Fulgent Genetics) Invitae Arrhythmogenic Cardiomyopathy Panel - Primary + Preliminary-Evidence Genes (Invitae)	<u>Comprehensive</u> <u>Cardiomyopathy Panels</u>	I42.0, I42.1, I42.2, I42.5, I42.8, I42.9, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
81413,81414	Rhythm Next (Ambry Genetics)Arrhythmia Panel (GeneDx)Comprehensive ArrhythmiaNGS Panel (Sequencing & Deletion/Duplication) (Fulgent Genetics)Invitae Arrhythmia Panel - Primary + Preliminary-Evidence Genes (Invitae	<u>Comprehensive</u> <u>Arrhythmia Panels</u>	I45.81, I49.8, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
0237U	Genomic Unity Cardiac Ion Channelopathies Analysis (Variantyx Inc)	<u>Comprehensive</u> <u>Arrhythmia Panels</u>	I45.81, I49.8, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
81413,81414, 81439	Invitae Arrhythmia and Cardiomyopathy Comprehensive Panel - Primary Genes Only (Invitae) Cardiomyopathy and Arrhythmia Panel, Sequencing	Comprehensive Arrhythmia & Cardiomyopathy (Sudden Cardiac or Unexplained Death) Panels	I42.0, I42.1, I42.2, I42.5, I45.81, I49.8, I42.9, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89

CPT[®] Codes	Example Tests (Labs)	Criteria Section	Common ICD Codes
	and Deletion/Duplication (ARUP Laboratories)		
	Pan Arrhythmia and Cardiomyopathy Panel (133 genes) (Phosphorus, Inc.)		
	Sudden Death Syndrome NGS Panel (Sequencing & Deletion/Duplication) (Fulgent Genetics)		
81439,S3865, S3866	Hypertrophic Cardiomyopathy Panel (PreventionGenetics)	<u>Hypertrophic</u> Cardiomyopathy Panels	I42.1, I42.2, I42.9, Z13.71, Z82.41, Z82.49, Z84.81,
	Invitae Hypertrophic Cardiomyopathy Panel - Primary Genes + Preliminary- Evidence Genes (Invitae)		Z84.89
	Invitae Hypertrophic Cardiomyopathy Panel - Primary Genes Only (Invitae)		
	Hypertrophic Cardiomyopathy (HCM) Panel (GeneDx)		
	HCMNext (Ambry Genetics)		
81439	Dilated Cardiomyopathy Panel (PreventionGenetics)	Dilated Cardiomyopathy Panels	I42.0, I42.9, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
	Invitae Dilated Cardiomyopathy Panel (Invitae)		,
	Dilated Cardiomyopathy Panel (GeneDx)		
	DCMNext (Ambry Genetics)		
81439	Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)/Dysplasia Panel (PreventionGenetics)	Arrhythmogenic Right Ventricular Cardiomyopathy Panels	I42.8, I42.9, Z82.41, Z82.49, Z84.81, Z84.89
	ARVCNext (Ambry Genetics)		

CPT[®] Codes	Example Tests (Labs)	Criteria Section	Common ICD Codes
	Arrhythmogenic Right Ventricular Cardiomyopathy Panel (GeneDx)		
	Arrhythmogenic Right Ventricular Cardiomyopathy Panel - Primary Genes Only (Invitae)		
81439	Left Ventricular Non- Compaction (LVNC) Panel (PreventionGenetics)	Left Ventricular Non- Compaction Cardiomyopathy Panels	I42.8, I42.9, Z82.41, Z82.49, Z84.81, Z84.89
	Invitae Left Ventricular Non- Compaction Panel - Primary Genes Only (Invitae)		
	Invitae Left Ventricular Non- Compaction Panel - Primary Genes + Preliminary-Evidence Genes (Invitae)		
81413,81414, S3860	Long QT Syndrome Panel (PreventionGenetics)	Long QT Syndrome Panels	I45.81, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
	LQTS Panel (GeneDx)		
	Invitae Long QT Syndrome		
	Panel - Primary Genes Only (Invitae)		
	Invitae Long QT Syndrome Panel - Primary Genes + Preliminary-Evidence Genes (Invitae)		
	Long QT Syndrome Multi-Gene Panel, Blood (Mayo Medical Laboratories)		
81413, 81414	Short QT Syndrome Panel (PreventionGenetics)	Short QT Syndrome Panels	Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
	SQTS Panel (GeneDx)		

CPT[®] Codes	Example Tests (Labs)	Criteria Section	Common ICD Codes
	Invitae Short QT Syndrome Panel - Primary Genes Only (Invitae)		
	Invitae Short QT Syndrome Panel - Primary Genes + Preliminary-Evidence Genes (Invitae)		
81413,81414, S3861	Brugada Panel (GeneDx) Invitae Brugada Syndrome Panel - Primary Genes Only (Invitae)	Brugada Syndrome Panels or SCN5A Variant Analysis	I49.8, Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
	Invitae Brugada Syndrome Panel - Primary Genes + Preliminary-Evidence Genes (Invitae)		
	Brugada Syndrome Multi-Gene Panel, Blood (Mayo Medical Laboratories)		
81413, 81414	Catecholaminergic Polymorphic Tachycardia Panel (PreventionGenetics)	<u>Catecholaminergic</u> <u>Polymorphic Ventricular</u> <u>Tachycardia Panels</u>	Z13.71, Z82.41, Z82.49, Z84.81, Z84.89
	Catecholaminergic Polymorphic Tachycardia Panel (GeneDx)		
	Catecholaminergic Polymorphic Tachycardia Panel (Invitae)		
81401,81405, 81406,81407, 81479	CPVTNext (Ambry Genetics) FHNext (Ambry Genetics) Familial Hypercholesterolemia NGS Panel (Fulgent Genetics)	<u>Familial</u> <u>Hypercholesterolemia</u> (FH) Panels	E78.01
01407 01407	Invitae Familial Hypercholesterolemia Panel - Primary Genes Only (Invitae)		
81405,81406, 81407,81408, 81479	Comprehensive Congenital Heart Disease Panel (PreventionGenetics	Congenital Heart Malformation Panels	Q20, Q21, Q22, Q23, Q24

CPT[®] Codes	Example Tests (Labs)	Criteria Section	Common ICD Codes
	Congenital heart disease NGS Panel (CTGT)		
	Congenital Heart Defect NGS Panel (Sequencing & Deletion/Duplication) (Fulgent Genetics)		
	Invitae Congenital Heart Disease Panel (Invitae)		

This policy document provides criteria for genetic testing for cardiovascular disorders. Please refer to:

• *CP.MP.215 Genetic Testing: Aortopathies and Connective Tissue Disorders* for criteria related to other genetic disorders affecting the heart and connective tissue.

• *CP.MP.230 Genetic Testing: Multisystem Inherited Disorders, Intellectual Disability, and Developmental Delay* for criteria related to genetic disorders that affect multiple organ systems.

• *CP.MP 235 Genetic Testing: Prenatal Diagnosis (via amniocentesis, CVS, or PUBS) and Pregnancy Loss* for criteria related to prenatal and pregnancy loss diagnostic genetic testing.

• *CP.MP.233 Genetic Testing: Preimplantation Genetic Testing* for criteria related to genetic testing of embryos prior to in vitro fertilization.

• *CP.MP.222 Genetic Testing: General Approach to Genetic Testing* for criteria related to cardiac disorders not specifically discussed in this or another non-general policy.

Policy/Criteria

Known Familial Variant Analysis for Cardiac Disorders

- I. It is the policy of health plans affiliated with Centene Corporation[©] that targeted mutation analysis for a known familial variant (81403, S3862) for a cardiac and connective tissue disorder is considered **medically necessary** when:
 - A. The member/enrollee has a <u>close relative¹</u> with a known pathogenic or likely pathogenic variant causing the condition.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support targeted mutation analysis for a known familial variant (81403, S3862) for a cardiac disorder for all other indications.

Comprehensive Cardiomyopathy Panels

I. It is the policy of health plans affiliated with Centene Corporation that comprehensive cardiomyopathy panels (81439) are considered **medically necessary** when meeting one of the following:

- A. The member/enrollee has an overlapping cardiomyopathy phenotype; and
 - Nongenetic causes have been ruled out (e.g., chronic hypertension, aortic stenosis, extreme physiologic hypertrophy, prior myocardial infarction from coronary artery disease, valvular and congenital heart disease, toxins [most commonly, anthracyclines or other chemotherapeutic agents; various drugs with idiosyncratic reactions], thyroid disease, inflammatory or infectious conditions, severe long-standing hypertension, and radiation);
- B. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SCD) or sudden unexplained death (SUD) at age 40 or less, and one of the following:
 - 1. Autopsy revealed unspecified cardiomyopathy (e.g., cardiomegaly or cardiomyopathy);
 - 2. Autopsy results do not reveal a cause of death.
- II. It is the policy of health plans affiliated with Centene Corporation current evidence does not support comprehensive cardiomyopathy panels (81439) for all other indications.

Note: Multigene panels that are targeted to the cardiomyopathy phenotype observed are recommended by professional guidelines

Comprehensive Arrhythmia Panels

I. It is the policy of health plans affiliated with Centene Corporation that comprehensive arrhythmia panels (81413, 81414, 0237U) are considered **medically necessary** when meeting one of the following:

A. One of the following:

- 1. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SCD) or sudden unexplained death (SUD) at age 40 or less;
- 2. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SUDS) over 40 years of age with a family history of sudden unexplained cardiac death, and
 - a) Autopsy results do not reveal a cause of death;
- B. The member/enrollee has aborted sudden cardiac death and
 - 1. Clinical tests were non-diagnostic (e.g., EKG, cardiac stress tests, echocardiogram, intravenous pharmacologic provocation testing).
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support comprehensive arrhythmia panels (81413, 81414, 0237U) for all other indications.

Comprehensive Arrhythmia and Cardiomyopathy (Sudden Cardiac or Unexplained Death) Panels

I. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support comprehensive panels including genes for both arrhythmias <u>and</u> cardiomyopathies (81413, 81414, 81439).

Hypertrophic Cardiomyopathy (HCM)

Hypertrophic Cardiomyopathy Panels

- I. It is the policy of health plans affiliated with Centene Corporation that genetic testing for hypertrophic cardiomyopathy via a multigene panel (81439, S3865) is considered **medically necessary** when meeting one of the following:
 - A. The member/enrollee has unexplained left ventricular hypertrophy (LVH) and both of the following:
 - 1. Myocardial wall thickness of 15mm or greater (in adults), or a z-score ≥ 2 (in children) based on echocardiogram or cardiac MRI;
 - 2. Non-genetic causes of HCM have been ruled out, such as chronic hypertension, aortic stenosis, extreme physiologic hypertrophy (aka "athletes heart");
 - B. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SUDS) and autopsy revealed an HCM phenotype.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for hypertrophic cardiomyopathy via a multigene panel (81439, S3865) for all other indications.

Note: If a panel is performed, the appropriate panel code should be used

Dilated Cardiomyopathy (DCM)

Dilated Cardiomyopathy Panels

I. It is the policy of health plans affiliated with Centene Corporation that genetic testing for dilated cardiomyopathy (DCM) via a multigene panel (81439) is considered **medically necessary** when meeting one of the following:

A. The member/enrollee meets both of the following:

- 1. The member/enrollee has a diagnosis of DCM by left ventricular enlargement and systolic dysfunction (e.g., ejection fraction less than 50%) based on echocardiogram or cardiac MRI;
- 2. Non-genetic causes of DCM have been ruled out, such as prior myocardial infarction from coronary artery disease, valvular and congenital heart disease, toxins (most commonly, anthracyclines or other chemotherapeutic agents; various drugs with idiosyncratic reactions), thyroid disease,

inflammatory or infectious conditions, severe long-standing hypertension, and radiation;

- B. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SUDS) and autopsy revealed a DCM phenotype.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for DCM (81403, 81439) all other indications.

Note: If a panel is performed, the appropriate panel code should be used.

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)

Arrhythmogenic Right Ventricular Cardiomyopathy Panels

- I. It is the policy of health plans affiliated with Centene Corporation that genetic testing for arrhythmogenic right ventricular cardiomyopathy (ARVC) via a multigene panel (81439) is considered **medically necessary** when meeting one of the following:
 - A. The member/enrollee has a confirmed diagnosis of ARVC by electrocardiogram, MRI, or angiogram meeting the task force criteria for at least possible ARVC (defined as having one major or two minor criteria²);
 - B. The member/enrollee has a <u>first-degree relative^{1a}</u> with sudden unexplained cardiac death (SUDS) and autopsy revealed an ARVC phenotype.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for arrhythmogenic right ventricular cardiomyopathy (ARVC) via a multigene panel (81439) for all other indications.

Note: If a panel is performed, the appropriate panel code should be used

Restrictive Cardiomyopathy (RCM)

Restrictive Cardiomyopathy Panels

I. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for restrictive cardiomyopathy (RCM) via a multigene panel (81403, 81439).

Note: If a panel is performed, the appropriate panel code should be used

Left Ventricular Non-Compaction Cardiomyopathy (LVNC)

Left Ventricular Non-Compaction Cardiomyopathy Panels

I. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for left ventricular non-compaction cardiomyopathy (LVNC) (81439) via a multigene panel when the LVNC phenotype is identified serendipitously in asymptomatic individuals with otherwise normal cardiovascular structure and function.

Note: The left ventricular noncompaction (LVNC) phenotype may be observed in conjunction with all other cardiomyopathy phenotypes and considerations related to genetic testing should always be directed by findings of a cardiomyopathy (or other cardiovascular) phenotype.

Long Qt Syndrome (LQTS)

Long QT Syndrome Panels

- I. It is the policy of health plans affiliated with Centene Corporation genetic testing for long QT syndrome (LQTS) via multigene panel (81413, 81414, S3860) is considered **medically necessary** when meeting one of the following:
 - A. The member/enrollee is asymptomatic and has a <u>close relative</u> with a clinical diagnosis of LQTS, whose genetic status is unknown;
 - B. The member/enrollee is symptomatic and both of the following;
 - 1. The member/enrollee meets either of the following:
 - a) The member/enrollee has a confirmed prolonged QTc (>460ms prepuberty, >450ms for men, >460 for women) on resting ECG and/or provocative stress testing with exercise or or during intravenous pharmacologic provocation testing (eg, with epinephrine), OR
 - b) The member/enrollee has a Schwartz score ≥ 2 ;
 - 2. Non-genetic causes of a prolonged QTc interval have been ruled out, such as QT-prolonging drugs, hypokalemia, structural heart disease, or certain neurologic conditions including subarachnoid bleed.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for long QT syndrome (LQTS) via multigene panel (81413, 81414, S3860) for all other indications.

Note: If a panel is performed, the appropriate panel code should be used

Short Qt Syndrome (SQTS)

Short QT Syndrome Panels

I. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for short QT syndrome (SQTS) (81413, 81414) via a multigene panel.

Brugada Syndrome (BrS)

Brugada Syndrome Panels or SCN5A Variant Analysis

- I. It is the policy of health plans affiliated with Centene Corporation that genetic testing for Brugada syndrome (BrS) via *SCN5A* variant analysis (81407, S3861) or multigene panel analysis (81413, 81414) is considered **medically necessary** when meeting both of the following:
 - A. The member/enrollee has one of the following ECG patterns:

- Type 1 ECG (elevation of the J wave ≥2 mm with a negative T wave and ST segment that is coved type and gradually descending) in more than one right precordial lead with or without administration of a sodium channel blocker (i.e., flecainide, pilsicainide, ajmaline, or procainamide);
- Type 2 ECG (elevation of the J wave ≥2 mm with a positive or biphasic T wave; ST segment with saddle-back configuration and elevated ≥1 mm) in more than one right precordial lead under baseline conditions with conversion to type 1 ECG following challenge with a sodium channel blocker;
- 3. Type 3 ECG (elevation of the J wave ≥2 mm with a positive T wave; ST segment with saddle-back configuration and elevated <1 mm) in more than one lead under baseline conditions with conversion to type 1 ECG following challenge with a sodium channel blocker;
- B. Any of the following:
 - 1. Documented ventricular fibrillation;
 - 2. Self-terminating polymorphic ventricular tachycardia;
 - 3. A family history of sudden cardiac death;
 - 4. Coved-type ECGs in family member/enrollee;
 - 5. Electrophysiologic inducibility;
 - 6. Syncope or nocturnal agonal respiration;
 - 7. Cardiac arrest.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for Brugada syndrome (BrS) via *SCN5A* variant analysis (81407, S3861) or multigene panel analysis (81413, 81414) for all other indications.

Note: If a panel is performed, the appropriate panel code should be used

Catecholaminergic Polymorphic Ventricular Tachycardia (CPTV)

Catecholaminergic Polymorphic Ventricular Tachycardia Panels

- I. It is the policy of health plans affiliated with Centene Corporation that genetic testing for catecholaminergic polymorphic ventricular tachycardia (CPVT) (81413, 81414) via multigene panel is considered **medically necessary** when meeting both of the following:
 - A. The member/enrollee has any of the following:
 - 1. Syncope occurring during physical activity or acute emotion
 - 2. History of exercise- or emotion-related palpitations and dizziness in some individuals
 - 3. Sudden unexpected cardiac death triggered by acute emotional stress or exercise
 - 4. Family history of juvenile sudden cardiac death triggered by exercise or acute emotion
 - 5. Exercise-induced polymorphic ventricular arrhythmias
 - 6. Ventricular fibrillation occurring in the setting of acute stress;

- B. An absence of structural cardiac abnormalities.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for catecholaminergic polymorphic ventricular tachycardia (CPVT) (81413, 81414) via multigene panel for all other indications.

Note: If a panel is performed, the appropriate panel code should be used

Familial Hypercholesterolemia (FH)

Familial Hypercholesterolemia (FH) Panels

- It is the policy of health plans affiliated with Centene Corporation that genetic testing for familial hypercholesterolemia (FH) via multigene panel (81401, 81405, 81406, 81407, 81479) to establish or confirm a diagnosis of familial hypercholesterolemia (FH) is considered **medically necessary** when meeting all of the following:
 - A. The member/enrollee is required to have a definitive genetic diagnosis in order to be eligible for specialty medications (eg, PCSK9 inhibitors);
 - B. The member/enrollee is categorized as having possible, probable, or definite familial hypercholesterolemia by at least one of the following:
 - 1. Dutch Lipid Clinic Network Criteria*
 - 2. Simon-Broome Register Criteria**
 - 3. Make Early Diagnosis Prevent Early Death (MEDPED) Diagnostic Criteria***;
 - C. The panel contains at a minimum the following genes : *APOB, LDLR*, and *PCSK9*.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for familial hypercholesterolemia (FH) via multigene panel (81401, 81405, 81406, 81407, 81479) to establish or confirm a diagnosis of familial hypercholesterolemia (FH) for all other indications.

*Dutch Lipid Clinic Network Criteria. A score of 8 or greater on the Dutch Lipid Clinic Network criteria is considered definitive FH. Scores between 3 and 7 are considered "possible" or "probable" FH.

Simon-Broome Register Criteria. A definitive diagnosis of FH is made based on a total cholesterol level greater than 290 mg/dL in adults (or low-density lipoprotein >190 mg/dL), together with either positive physical exam findings or a positive genetic test. Probable FH is diagnosed using the same cholesterol levels, plus family history of premature coronary artery disease or total cholesterol of at least 290 mg/dL in a first- or a second-degree relative. *Make Early Diagnosis Prevent Early Death (MEDPED) Diagnostic Criteria. These criteria provide a yes/no answer for whether an individual has FH, based on family history, age, and cholesterol levels. An individual who meets criteria for FH can be considered to have definitive FH.

Congenital Heart Malformations

Congenital Heart Malformation Panels

- It is the policy of health plans affiliated with Centene Corporation that genetic testing for congenital heart malformations via multigene panel analysis (81405, 81406, 81407, 81408, 81479) may be considered medically necessary when meeting all the following:
 - A. The member/enrollee has a complex congenital heart malformation (e.g., hypoplastic left heart, transposition of the great vessels, tetralogy of fallot, etc);
 - B. The member/enrollee's clinical features do not fit a known genetic disorder for which targeted testing could be performed (e.g., 22q11.2 deletion syndrome, Down syndrome/Trisomy 21, Williams syndrome, etc.);
 - C. Prenatal teratogen exposure has been considered, and ruled out when possible.
- II. It is the policy of health plans affiliated with Centene Corporation that current evidence does not support genetic testing for congenital heart malformations via multigene panel analysis (81405, 81406, 81407, 81408, 81479) for all other indications, including "simple" congenital heart defects (e.g. ventricular septal defects, atrial septal defects, patent ductus arteriosus).

Notes and Definitions

- 1. Close relatives include first, second, and third degree <u>blood</u> relatives:
 - a. First-degree relatives are parents, siblings, and children
 - b. **Second-degree relatives** are grandparents, aunts, uncles, nieces, nephews, grandchildren, and half siblings
 - c. **Third-degree relatives** are great grandparents, great aunts, great uncles, great grandchildren, and first cousins
- 2. See Marcus, et. al. 2010 for details regarding major and minor criteria.

Background

American College of Medical Genetics

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for all types of cardiomyopathy:

- Genetic testing is recommended for the most clearly affected family member/enrollee.
- Cascade genetic testing of at-risk family member/enrollee is recommended for pathogenic and likely pathogenic variants.
- In addition to routine newborn screening tests, specialized evaluation of infants with cardiomyopathy is recommended, and genetic testing should be considered.

Genetic Testing for HCM

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for HCM:

"The diagnostic yield of HCM testing is approximately 30–60%. The yield of testing is higher in individuals who have a known family history of HCM. Pathogenic variants in MYH7 and MYBPC3 account for approximately 80% of all cases for which a molecular diagnosis is achieved. Beyond sarcomeric genes, core genes to screen in patients with HCM include GLA, PRKAG2, and LAMP2."

"Infants and children with HCM may require more specialized evaluation and diagnostic testing because of the rate of syndromic conditions and inborn errors of metabolism associated with HCM at these ages. Consultation with a geneticist is indicated." *Genetic Testing for DCM*

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for DCM:

"Evidence indicates that clinical genetic testing can identify the cause of DCM in families with autosomal dominant inheritance in approximately 25-40% of cases, whereas in isolated cases of DCM, the yield of testing is commonly estimated at 10–25%. Core genes to be tested in individuals with DCM include genes encoding sarcomeric and cytoskeletal proteins, although DCM testing panels typically carry several dozen genes, some with uncertain significance. In most cases, all HCM and ARVC genes are included in DCM panels because of gene/phenotype overlap."

"As in HCM, infants and children with DCM may require additional diagnostic evaluation."

Genetic Testing for ARVC

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for ARVC:

"Genetic testing of PKP2, DSP, DSG2, DSC2, JUP, TMEM43, and PLN resulted in a molecular diagnosis in 63% of patients who fulfilled Task Force criteria for ARVC. Digenic inheritance and compound heterozygosity are frequent and, combined with decreased penetrance that is a feature of ARVC, may significantly complicate genetic counseling. ARVC overlaps with arrhythmogenic left ventricular cardiomyopathy, sometimes more broadly referred to as arrhythmogenic cardiomyopathy. This reflects genetic testing for ARVC using a larger cardiomyopathy panel may identify nondesmosomal genes with pathogenic variants. Similarly, desmosome gene pathogenic variations have also been identified in patients diagnosed with DCM."

Genetic Testing for RCM

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for RCM:

In regard to selecting genes to test in association with the cardiomyopathy, "Consider HCM or DCM panel."

"Genetic causes of RCM continue to be identified, but because RCM is a relatively rare form of cardiomyopathy, numbers remain limited. A recent study identified a pathogenic variant in 60% of subjects, primarily occurring in genes known to cause HCM. Family members were frequently identified with HCM or HCM with restrictive physiology... Cardiac amyloidosis resulting from pathogenic variants in TTR needs to be differentiated from other forms of RCM due to the age demographic in which this occurs, the slowly progressive nature of this disease, and therefore different management strategies. The TTR allele p.Val142IIe (commonly referred to as Val122IIe based on nomenclature for the circulating protein after N-terminal peptide cleavage) has been found in 10% of African Americans older than age 65 with severe congestive heart failure. Substantial recent progress with amyloidosis, both in imaging strategies, including cardiac magnetic resonance and pyrophosphate scanning, and therapeutic interventions in ongoing clinical trials, provide new incentives for genetic diagnosis."

Genetic Testing for LVNC

The American College of Medical Genetics and Genomics (ACMG) (2018) published clinical practice recommendations for the genetic evaluation of cardiomyopathy. The following recommendations were made for LVNC:

"The left ventricular noncompaction (LVNC) phenotype may be observed in conjunction with all other cardiomyopathy phenotypes, so considerations related to genetic testing should always be directed by findings of a cardiomyopathy (or other cardiovascular) phenotype. Genetic testing is not recommended when the LVNC phenotype is identified serendipitously in asymptomatic individuals with otherwise normal cardiovascular structure and function."

<u>American Heart Association</u> Genetic Testing for Dilated Cardiomyopathy

The American Heart Association (2016) published a scientific statement regarding diagnostic and treatment strategies for dilated cardiomyopathy and made the following recommendations regarding genetic testing for dilated cardiomyopathy:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives after the identification of a DCM-causative mutation in the index case.
- In patients with familial or idiopathic cardiomyopathy, genetic testing can be useful in conjunction with genetic counseling.
- Genetic testing can be useful for patients with familial DCM to confirm the diagnosis, to facilitate cascade screening within the family, and to help with family planning.

Additionally, the following recommendations were made regarding genetic testing for pediatric dilated cardiomyopathy:

- Comprehensive or targeted DCM genetic testing (LMNA and SCN5A) is recommended for patients with DCM and significant cardiac conduction disease (ie, first-, second-, or third-degree heart block) or a family history of premature unexpected sudden death.
- Mutation-specific genetic testing is recommended for family members and appropriate relatives after the identification of a DCM-causative mutation in the index case.
- Genetic testing can be useful for patients with familial DCM to confirm the diagnosis, facilitate cascade screening within the family, and help with family planning.
- In pediatric patients with DCM phenotype, and musculoskeletal symptoms such as hypotonia, a skeletal muscle biopsy may aid in the diagnosis, and genetic testing may be considered.

American College of Cardiology Foundation and American Heart Association

Genetic Testing for Hypertrophic Cardiomyopathy

The American College of Cardiology Foundation and the American Heart Association (2011) issued joint guidelines on the diagnosis and treatment of hypertrophic cardiomyopathy and made the following recommendations in regards to genetic testing:

- Genetic testing is reasonable in the index patient to facilitate the identification of firstdegree family members at risk for developing HCM.
- Genetic testing for HCM and other genetic causes of unexplained cardiac hypertrophy is recommended in patients with an atypical clinical presentation of HCM or when another genetic condition is suspected to be the cause.
- The usefulness of genetic testing in the assessment of risk of SCD in HCM is uncertain.
- Genetic testing is not indicated in relatives when the index patient does not have a definitive pathogenic mutation.
- Evaluation of familial inheritance and genetic counseling is recommended as part of the assessment of patients with HCM.
- Patients who undergo genetic testing should also undergo counseling by someone knowledgeable in the genetics of cardiovascular disease so that results and their clinical significance can be appropriately reviewed with the patient.
- Screening (clinical, with or without genetic testing) is recommended in first-degree relatives of patients with HCM.

American Heart Association, American College of Cardiology, and the Heart Rhythm Society In 2017, the American Heart Association, American College of Cardiology, and the Heart Rhythm Society published guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death:

- In first-degree relatives of patients who have a causative mutation for long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, or Brugada syndrome, genetic counseling and mutation-specific genetic testing are recommended. (I Strong)
- In patients with clinically diagnosed long QT syndrome, genetic counseling and genetic testing are recommended. Genetic testing offers diagnostic, prognostic, and therapeutic information.(I Strong)
- In patients with catecholaminergic polymorphic ventricular tachycardia and with clinical VT or exertional syncope, genetic counseling and genetic testing are reasonable. Genetic testing may confirm a diagnosis; however, therapy for these patients is not guided by genotype status. (IIa Moderate)

- In patients with suspected or established Brugada syndrome, genetic counseling and genetic testing may be useful to facilitate cascade screening of relatives, allowing for lifestyle modification and potential treatment. (IIb Weak)
- In patients with short QT syndrome, genetic testing may be considered to facilitate screening of first-degree relatives. (IIb Weak)

Heart Failure Society of America

The Heart Failure Society of America published joint guidelines with the American College of Medical Genetics (2018) and made the following recommendations:

- Guideline 4: Genetic testing is recommended for patients with cardiomyopathy (Level of evidence A)
 - 4a: Genetic testing is recommended for the most clearly affected family member/enrollee.
 - 4b: Cascade genetic testing of at-risk family member/enrollees is recommended for pathogenic and likely pathogenic variants.
 - 4c: In addition to routine newborn screening tests, specialized evaluation of infants with cardiomyopathy is recommended, and genetic testing should be considered

European Society of Cardiology

Genetic Testing for Hypertrophic Cardiomyopathy

The European Society of Cardiology (2014) issued guidelines on the diagnosis and management of hypertrophic cardiomyopathy, which included the following recommendations related to genetic testing:

- Genetic testing is recommended in patients fulfilling diagnostic criteria for hypertrophic cardiomyopathy when it enables cascade genetic screening of their relatives.
- It is recommended that genetic testing be performed in certified diagnostic laboratories with expertise in the interpretation of cardiomyopathy-related mutations.
- In the presence of symptoms and signs of disease suggestive of specific causes of hypertrophic cardiomyopathy, genetic testing is recommended to confirm the diagnosis.
- Cascade genetic screening, after pre-test counseling, is recommended in first-degree adult relatives of patients with a definite disease-causing mutation.
- Genetic testing in patients with a borderline diagnosis of hypertrophic cardiomyopathy should be performed only after detailed assessment by specialist teams.

<u>Heart Rhythm Society and the European Heart Rhythm Association</u> *Genetic Testing for Hypertrophic Cardiomyopathy*

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for hypertrophic cardiomyopathy:

- Comprehensive or targeted ... HCM genetic testing is recommended for any patient in whom a cardiologist has established a clinical diagnosis of HCM based on examination of the patient's clinical history, family history, and electrocardiographic/echocardiographic phenotype. (Class I)
- Mutation-specific testing is recommended for family members and appropriate relatives following the identification of the HCM-causative mutation in an index case. (Class I)

Genetic Testing for Dilated Cardiomyopathy

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for dilated cardiomyopathy:

- Comprehensive or targeted (LM and SCN5A) DCM genetic testing is recommended for patients with DCM and significant cardiac conduction disease (ie, first-, second-, or third-degree heart block) and/or with a family history of premature unexpected sudden death. (Class I)
- Mutation-specific [familial variant] testing is recommended for family members and appropriate relatives following the identification of a DCM-causative mutation in the index case. (Class I)
- Genetic testing can be useful for patients with familial DCM to confirm the diagnosis, to recognize those who are at highest risk of arrhythmia and syndromic features, to facilitate cascade screening within the family, and to help with family planning. (Class IIa)

Genetic Testing for Arrhythmogenic Cardiomyopathy/Arrhythmogenic Right Ventricular Cardiomyopathy

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for arrhythmogenic right ventricular cardiomyopathy:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of the ACM/ARVC-causative mutation in an index case. (Class I)
- Comprehensive or targeted (DSC2, DSG2, DSP, JUP, PKP2, and TMEM43) ACM/ARVC genetic testing can be useful for patients satisfying task force diagnostic criteria for ACM/ARVC. (Class IIa)

Genetic Testing for Restrictive Cardiomyopathy

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for restrictive cardiomyopathy:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of a RCM-causative mutation in the index case. (Class I)
- RCM genetic testing may be considered for patients in whom a cardiologist has established a clinical index of suspicion for RCM based on examination of the patient's clinical history, family history, and electrocardiographic/ echocardiographic phenotype. (Class IIb)

Genetic Testing for Left Ventricular Noncompaction

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for left ventricular noncompaction:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of a LVNC-causative mutation in the index case. (Class I)
- LVNC genetic testing can be useful for patients in whom a cardiologist has established a clinical diagnosis of LVNC based on examination of the patient's clinical history, family history, and electrocardiographic/echocardiographic phenotype. (Class IIa)

Genetic Testing for Long QT Syndrome

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for LQTS:

- Comprehensive or LQT1-3 (KCNQ1, KCNH2, SCN5A) targeted LQTS genetic testing is recommended for any patient in whom a cardiologist has established a strong clinical index of suspicion for LQTS based on examination of the patient's clinical history, family history, and expressed electrocardiographic (resting 12-lead ECGs and/or provocative stress testing with exercise or catecholamine infusion) phenotype. (Class I)
- Comprehensive or LQT1-3 (KCNQ1, KCNH2, SCN5A) targeted LQTS genetic testing is recommended for any asymptomatic patient with QT prolongation in the absence of other clinical conditions that might prolong the QT interval (such as electrolyte abnormalities, hypertrophy, bundle branch block, etc., ie, otherwise idiopathic) on serial 12-lead ECGs defined as QTc.480 ms (prepuberty) or.500 ms (adults). (Class I)
- Mutation-specific genetic testing is recommended for family members and other appropriate relatives subsequently following the identification of the LQTS-causative mutation in an index case. (Class I)
- Comprehensive or LQT1-3 (KCNQ1, KCNH2, SCN5A) targeted LQTS genetic testing may be considered for any asymptomatic patient with otherwise idiopathic QTc values.460 ms (prepuberty) or.480 ms (adults) on serial 12-lead ECGs. (Class I)

Genetic Testing for Brugada Syndrome

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for BrS:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of the BrS-causative mutation in an index case. (Class I)
- Comprehensive or BrS1 (SCN5A) targeted BrS genetic testing can be useful for any patient in whom a cardiologist has established a clinical index of suspicion for BrS based on examination of the patient's clinical history, family history, and expressed electrocardiographic (resting 12-lead ECGs and/or provocative drug challenge testing) phenotype. (Class IIa)
- Genetic testing is not indicated in the setting of an isolated type 2 or type 3 Brugada ECG pattern. (Class III)

Genetic Testing for Catecholaminergic Polymorphic Ventricular Tachycardia

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for CPVT:

• Comprehensive or CPVT1 and CVPT2 (RYR2, CASQ2) targeted CPVT genetic testing is recommended for any patient in whom a cardiologist has established a clinical index of suspicion for CPVT based on examination of the patient's clinical history, family history, and expressed electrocardiographic phenotype during provocative stress testing with cycle, treadmill, or catecholamine infusion. Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of the CPVT-causative mutation in an index case. (Class I)

Genetic Testing for Short QT Syndrome

The Heart Rhythm Society and the European Heart Rhythm Association (2011) published joint recommendations and made the following recommendations for genetic testing for SQTS:

- Mutation-specific genetic testing is recommended for family members and appropriate relatives following the identification of the SQTS-causative mutation in an index case. (Class I)
- Comprehensive or SQT1-3 (KCNH2, KCNQ1, KCNJ2) targeted SQTS genetic testing may be considered for any patient in whom a cardiologist has established a strong clinical index of suspicion for SQTS based on examination of the patient's clinical history, family history, and electrocardiographic phenotype. (Class IIb)

Genetic Testing for Out-of-Hospital Cardiac Arrest Survivors

- In the survivor of an Unexplained Out-of-Hospital Cardiac Arrest, genetic testing should be guided by the results of medical evaluation and is used for the primary purpose of screening at-risk family members for subclinical disease. (Class I)
- Routine genetic testing, in the absence of a clinical index of suspicion for a specific cardiomyopathy or channelopathy, is not indicated for the survivor of an Unexplained Out-of-Hospital Cardiac Arrest. (Class III)

Genetic Testing in SUDS and SUDI

The Heart Rhythm Society, European Heart Rhythm Association, and the Asia Pacific Heart Rhythm Society (2013) issued an expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes, which included the following guidelines on genetic testing in SUDS and SUDI:

- Collection of blood and/or suitable tissue for molecular autopsy/postmortem genetic testing is recommended in all SUDS victims. (Class I)
- Collection of blood and/or suitable tissue for molecular autopsy is recommended in all SUDI victims. (Class I)
- Genetic screening of the first-degree relatives of a SUDS victim is recommended whenever a pathogenic mutation in a gene associated with increased risk of sudden death is identified by molecular autopsy in the SUDS victim. (Class I)
- An arrhythmia syndrome-focused molecular autopsy/postmortem genetic testing can be useful for all SUDI victims. (Class IIa)
- Genetic screening of the first-degree relatives of a SUDI victim is recommended whenever a pathogenic mutation in a gene associated with increased risk of sudden death is identified by molecular autopsy in the SUDI victim. Obligate mutations carriers should be prioritized. (Class I)

Asia Pacific Heart Rhythm Society and Heart Rhythm Society

The Asia Pacific Heart Rhythm Society (APHRS) and Heart Rhythm Society (HRS) published an expert consensus statement (2020) on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families that includes the following "take-home messages" related to genetic testing:

- For survivors of sudden cardiac arrest (SCA), victims of sudden unexplained death (SUD), and their relatives, a multidisciplinary team is central to thorough investigation, so as to maximize the opportunity to make a diagnosis. Where there has been an SCD or resuscitated SCA and a genetic cause is suspected, genetic testing and counseling is essential for families, to ensure that risks, benefits, results, and the clinical significance of genetic testing can be discussed.
- A comprehensive autopsy is an essential part of the investigation of SUD and should include collection and storage of tissue suitable for genetic analysis. When the autopsy suggests a possible genetic cause, or no cause and the heart is normal, referral to a multidisciplinary team for further investigation is indicated.
- For victims of SCD or survivors of cardiac arrest where the phenotype is known, genetic testing of the proband focused on likely candidate genes, along with clinical evaluation of family members, aids in identifying family members with, or at risk of developing, the same condition.
- For the investigation of SCA survivors, essential inquiry includes detailed personal and family history, witness accounts, physical examination, multiple electrocardiograms (ECGs), and cardiac imaging. Ambulatory monitoring and/or provocative testing (exercise, pharmacological, and invasive electrophysiological) may provide additional useful information. A sample suitable for future DNA testing should be taken early in the patient's course and stored.
- Genetic investigation of SCA survivors is best undertaken at a center with multidisciplinary care infrastructure and should focus on likely candidate genes known to be causally related to the suspected phenotype. In some cases, genetic evaluation without a suspected phenotype may be undertaken with appropriate genetic counseling, although genetic evaluation of patients with a known nongenetic cause of cardiac arrest is discouraged.

European Society of Human Genetics, European Council of Legal Medicine, European Society of Cardiology working group on myocardial and pericardial diseases, European Reference Network for rare, low prevalence and complex diseases of the heart (ERN GUARD-Heart), Association for European Cardiovascular Pathology

Genetic Testing for Sudden Cardiac Death

The European Society of Human Genetics, European Council of Legal Medicine, European Society of Cardiology working group on myocardial and pericardial diseases, European Reference Network for rare, low prevalence and complex diseases of the heart (ERN GUARD-Heart), Association for European Cardiovascular Pathology (2019) made the following recommendations related to genetic testing in the context of sudden cardiac death:

• Increasing the proportion of both medicolegal and medical autopsy in case of sudden, unexpected natural death should be a major objective. This should be mandatory for deaths under the age of 40, it should be considered for deaths between ages 40 and 65, and evaluated on a case by case basis after age 65.

- In cases of sudden (cardiac) death, a full autopsy should be performed, including heart dissection, sampling for possible genetic and toxicological analysis, and examination should adhere to minimal standards as per European guidelines. Guidelines should be made mandatory in European countries by seeking support from Ministries of Health and Justice.
- Information on genetic testing and communication of genetic test results should be given in compliance with standard procedures in clinical genetics and with the appropriate national legislation. Familial communication and appropriate cascade testing should be approached in a systematic fashion using genetic services where possible. We consider that there can be no duty to warn all relatives, but that a responsible system will make attempts to alert relatives when appropriate.
- A multidisciplinary cardiogenetic team should conduct the family investigation. The appropriate genetic test should be considered according to a combination of pathology findings, family history, and the results of cardiac family screening. The genetic test should be performed on the DNA of the deceased in the first instance, and testing of relatives should then be offered if a variant affecting function (pathogenic or likely pathogenic variant) is identified.

Familial Hypercholesterolemia

Migliara et al. (2017)

Migliara et al. (2017) conducted a systematic review of guidelines on genetic testing and patient management of individuals with familial hypercholesterolemia (FH). The literature search, conducted through April 2017, identified 10 guidelines for inclusion. Three of the guidelines were developed within the U. S.: those by the National Lipid Association, International FH Foundation, and American Association of Clinical Endocrinologists and American College of Endocrinology. Guidance from the National Institute for Health and Care Excellence was also included in the review. The quality of the guidelines was assessed using the Appraisal of Guidelines for Research and Evaluation II) instrument, with guideline quality ranging from average to good. Most guidelines agreed that genetic testing follows cholesterol testing, physical findings distinctive of FH, and highly suggestive family history of FH. Universal screening for FH was not recommended. This review highlighted the importance of genetic testing for FH in children, because aggressive treatment at an earlier age may prevent premature coronary heart disease.

National Heart, Lung, and Blood Institute

Recommendations from an expert panel on cardiovascular health and risk reduction in children and adolescents were published in 2011. The report contained the following recommendations (see Table 1 below).

Table 1. Recommendations on Cardiovascular Health and Risk Reduction in Children and Adolescents

Recommendation	GOE
"The evidence review supports the concept that early identification and control of dyslipidemia throughout youth and into adulthood will substantially reduce clinical CVD risk beginning in young adult life. Preliminary evidence in children with heterozygous FH with markedly	В

elevated LDL-C indicates that earlier treatment is associated with reduced subclinical evidence of atherosclerosis."	
"TC and LDL-C levels fall as much as 10-20% or more during puberty."	В
"Based on this normal pattern of change in lipid and lipoprotein levels with growth and maturation, age 10 years (range age 9-11 years) is a stable time for lipid assessment in children. For most children, this age range will precede onset of puberty."	D
CVD: cardiovascular disease; FH: familial hypercholesterolemia;GOE: grade of evidence; LDL-C: low-density lipoprotein cholesterol; TC: triglycerides.	

American College of Cardiology/American Heart Association

The American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines published an updated guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy (2020), which stated the following with regard to genetic testing for HCM:

"Counseling patients with HCM regarding the potential for genetic transmission of HCM is one of the corner-stones of care. Screening first-degree family members of patients with HCM, using either genetic testing or an imaging/electrocardiographic surveillance protocol, can begin at any age and can be influenced by specifics of the patient/family history and family preference. As screening recommendations for family members hinge on the pathogenicity of any detected variants, the reported pathogenicity should be reconfirmed every 2 to 3 years."

Coding Implications

This clinical policy references Current Procedural Terminology (CPT[®]). CPT[®] is a registered trademark of the American Medical Association. All CPT codes and descriptions are copyrighted 2021, American Medical Association. All rights reserved. CPT codes and CPT descriptions are from the current manuals and those included herein are not intended to be all-inclusive and are included for informational purposes only. Codes referenced in this clinical policy are for informational purposes only. Inclusion or exclusion of any codes does not guarantee coverage. Providers should reference the most up-to-date sources of professional coding guidance prior to the submission of claims for reimbursement of covered services.

Reviews, Revisions, and Approvals	Revision Date	Approval Date
Policy developed	02/22	02/22

References

 Cirino AL, Ho C. Hypertrophic Cardiomyopathy Overview. 2008 Aug 5 [Updated 2019 Jun 6]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1768/</u>

- 2. Hershberger RE, Givertz MM, Ho CY, et al. Genetic Evaluation of Cardiomyopathy-A Heart Failure Society of America Practice Guideline. J Card Fail. 2018;24(5):281-302. doi:10.1016/j.cardfail.2018.03.004
- 3. Authors/Task Force members, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733-2779. doi:10.1093/eurheartj/ehu284
- 4. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):e783-e831. doi:10.1161/CIR.0b013e318223e2bd
- 5. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308-1339. doi:10.1016/j.hrthm.2011.05.020
- Hershberger RE, Morales A. Dilated Cardiomyopathy Overview. 2007 Jul 27 [Updated 2018 Aug 23]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1309/
- Hershberger RE, Givertz MM, Ho CY, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG) [published correction appears in Genet Med. 2019 Oct;21(10):2406-2409]. Genet Med. 2018;20(9):899-909. doi:10.1038/s41436-018-0039-z
- Bozkurt B, Colvin M, Cook J, et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association [published correction appears in Circulation. 2016 Dec 6;134(23):e652]. Circulation. 2016;134(23):e579-e646. doi:10.1161/CIR.000000000000455
- McNally E, MacLeod H, Dellefave-Castillo L. Arrhythmogenic Right Ventricular Cardiomyopathy. 2005 Apr 18 [Updated 2017 May 25]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1131/</u>
- Marcus FI, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur Heart J. 2010;31(7):806-814. doi:10.1093/eurheartj/ehq025
- Alders M, Bikker H, Christiaans I. Long QT Syndrome. 2003 Feb 20 [Updated 2018 Feb 8]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1129/</u>
- 12. Brugada R, Campuzano O, Sarquella-Brugada G, et al. Brugada Syndrome. 2005 Mar 31 [Updated 2016 Nov 17]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors.

GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1517/</u>

- Napolitano C, Priori SG, Bloise R. Catecholaminergic Polymorphic Ventricular Tachycardia. 2004 Oct 14 [Updated 2016 Oct 13]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK1289/</u>
- Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):1932-1963. doi:10.1016/j.hrthm.2013.05.014
- Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy? [published correction appears in J Am Coll Cardiol. 2016 Oct 18;68(16):1821]. J Am Coll Cardiol. 2016;68(9):949-966. doi:10.1016/j.jacc.2016.05.096
- Stiles MK, Wilde AAM, Abrams DJ, et al. 2020 APHRS/HRS Expert Consensus Statement on the Investigation of Decedents with Sudden Unexplained Death and Patients with Sudden Cardiac Arrest, and of Their Families [published online ahead of print, 2020 Oct 13]. Heart Rhythm. 2020;S1547-5271(20)30953-X. doi:10.1016/j.hrthm.2020.10.010
- Migliara G, Baccolini V, Rosso A, et al. Familial Hypercholesterolemia: A Systematic Review of Guidelines on Genetic Testing and Patient Management. Front Public Health. 2017;5:252. Published 2017 Sep 25. doi:10.3389/fpubh.2017.00252
- Musunuru K, Hershberger RE, Day SM, et al. Genetic Testing for Inherited Cardiovascular Diseases: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2020;13(4):e000067. doi:10.1161/HCG.000000000000067
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128 Suppl 5(Suppl 5):S213-S256. doi:10.1542/peds.2009-2107C
- 20. Familial Hypercholesterolemia Foundation. Diagnostic Criteria for Familial Hypercholesterolemia. Available at <u>https://thefhfoundation.org/diagnostic-criteria-for-familia-hypercholesterolemia2</u>. Accessed November 23, 2020.
- Fellmann F, van El CG, Charron P, et al. European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death. Eur J Hum Genet. 2019;27(12):1763-1773. doi:10.1038/s41431-019-0445-y
- Pierpont ME, Brueckner M, Chung WK, et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association [published correction appears in Circulation. 2018 Nov 20;138(21):e713]. Circulation. 2018;138(21):e653-e711. doi:10.1161/CIR.000000000000606
- 23. Mahler GJ, Butcher JT. Cardiac developmental toxicity. Birth Defects Res C Embryo Today. 2011;93(4):291-297. doi:10.1002/bdrc.20219

- Geddes GC, Syverson E, Earing MG. Three year experience of a clinical cardiovascular genetics program for infants with congenital heart disease. Congenit Heart Dis. 2019;14(5):832-837. doi:10.1111/chd.12817
- 25. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society [published correction appears in Circulation. 2018 Sep 25;138(13):e419-e420]. Circulation. 2018;138(13):e272-e391. doi:10.1161/CIR.00000000000549
- 26. Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2020;76(25):e159-e240. doi:10.1016/j.jacc.2020.08.045

Important Reminder

This clinical policy has been developed by appropriately experienced and licensed health care professionals based on a review and consideration of currently available generally accepted standards of medical practice; peer-reviewed medical literature; government agency/program approval status; evidence-based guidelines and positions of leading national health professional organizations; views of physicians practicing in relevant clinical areas affected by this clinical policy; and other available clinical information. The Health Plan makes no representations and accepts no liability with respect to the content of any external information used or relied upon in developing this clinical policy. This clinical policy is consistent with standards of medical practice current at the time that this clinical policy was approved. "Health Plan" means a health plan that has adopted this clinical policy and that is operated or administered, in whole or in part, by Centene Management Company, LLC, or any of such health plan's affiliates, as applicable.

The purpose of this clinical policy is to provide a guide to medical necessity, which is a component of the guidelines used to assist in making coverage decisions and administering benefits. It does not constitute a contract or guarantee regarding payment or results. Coverage decisions and the administration of benefits are subject to all terms, conditions, exclusions and limitations of the coverage documents (e.g., evidence of coverage, certificate of coverage, policy, contract of insurance, etc.), as well as to state and federal requirements and applicable Health Plan-level administrative policies and procedures.

This clinical policy is effective as of the date determined by the Health Plan. The date of posting may not be the effective date of this clinical policy. This clinical policy may be subject to applicable legal and regulatory requirements relating to provider notification. If there is a discrepancy between the effective date of this clinical policy and any applicable legal or regulatory requirement, the requirements of law and regulation shall govern. The Health Plan retains the right to change, amend or withdraw this clinical policy, and additional clinical policies may be developed and adopted as needed, at any time.

This clinical policy does not constitute medical advice, medical treatment or medical care. It is not intended to dictate to providers how to practice medicine. Providers are expected to exercise professional medical judgment in providing the most appropriate care, and are solely responsible for the medical advice and treatment of members/enrollees. This clinical policy is not intended to recommend treatment for members/enrollees. Members/enrollees should consult with their treating physician in connection with diagnosis and treatment decisions.

Providers referred to in this clinical policy are independent contractors who exercise independent judgment and over whom the Health Plan has no control or right of control. Providers are not agents or employees of the Health Plan.

This clinical policy is the property of the Health Plan. Unauthorized copying, use, and distribution of this clinical policy or any information contained herein are strictly prohibited. Providers, members/enrollees and their representatives are bound to the terms and conditions expressed herein through the terms of their contracts. Where no such contract exists, providers, members/enrollees and their representatives agree to be bound by such terms and conditions by providing services to members/enrollees and/or submitting claims for payment for such services.

Note: For Medicaid members/enrollees, when state Medicaid coverage provisions conflict with the coverage provisions in this clinical policy, state Medicaid coverage provisions take precedence. Please refer to the state Medicaid manual for any coverage provisions pertaining to this clinical policy.

Note: For Medicare members/enrollees, to ensure consistency with the Medicare National Coverage Determinations (NCD) and Local Coverage Determinations (LCD), all applicable NCDs, LCDs, and Medicare Coverage Articles should be reviewed <u>prior to</u> applying the criteria set forth in this clinical policy. Refer to the CMS website at <u>http://www.cms.gov</u> for additional information.

©2016 Centene Corporation. All rights reserved. All materials are exclusively owned by Centene Corporation and are protected by United States copyright law and international copyright law. No part of this publication may be reproduced, copied, modified, distributed, displayed, stored in a retrieval system, transmitted in any form or by any means, or otherwise published without the prior written permission of Centene Corporation. You may not alter or remove any trademark, copyright or other notice contained herein. Centene[®] and Centene Corporation[®] are registered trademarks exclusively owned by Centene Corporation.